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Abstract

Various aspects of the perforation of thin targets by high
speed fragments have been investigated. A fragment projector
yielding compact steel fragments having a velocity of 3.17 km/sec
and a mass of .0234 gm was generally used for experimental
studies. The design features of this projector along with methods
of attaining higher velocities are discussed in Chapter I. The
spatial distribution and total mass of the ejecta produced in
the perforation of thin targets for both normal and oblique im-
pact are discussed in Chapter II. A simple physical model useful
in predicting the velocity of a fragment after having perforated
a thin target is discussed in Chapter III along with the dimen-
sional features of the perforations. In Chapter IV the volume
and shape of craters producted in lead at 60° obliquity by frag-

ments having a velocity of 4 km/sec are compared with the
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}—»—-—‘,..’I

-t

characteristics of craters produced at impact velocities of

3 km/sec and 5 km/sec.
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Chapter I - Projector Studies
- R Vitali

Introduction

In order to facilitate controlled experiments in terminal
hyperballistics, two high explosive fragment projectors have been
developed. Nominally they yield velocities of 3 km/sec and
L km/sec . The projectiles at impact have unit aspect ratio and
an impact mass of approximately 0.025 grams. The particulars of
the charge and charge performance will be discussed in this

chapter.

Experimental Procedure

Time of flight measurements were made with a model 7270
Beckman-Berkeley time interval meter., Time measurements were ob-
served to a tenth of a microsecond. The chronograph was initiated
with a twisted pair of No. 26 nyclad wire located at the base
of the charge. The stop grid consisted of alternate layers of
lead foil and paper. A Flexitron flash X-ray system, Type PS-300-
1000-0.2 was also employed to measure time of flights, and to
observe the projectiles in flight. Instantaneous velocities were

then determined from the distance-time data.

Mild steel plates were used as witness targets in order to
determine whether or not the projectile remained intact throughout

its flight. After each firing these plates were examined for
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extraneous craters or for any unusual crater characteristics.

If anything but a single uniform crater was observed, the shot was
not used for velocity measurements. A determination of mass lost by
the projectiles was obtained by firing them into celotex or styro-
foam targets; they were recovered intact from these targets and mass
measurements were made with an analytical balance and recorded to

0.0001 grams.

3 km/sec Projector

The geometrical aspects of the nominal 3 km/sec projector are
shown in Fig. l1-1(a). It is a right circular cylinder of Comp. B
(6ORDX/LOTNT), 1-5/8 in. in diameter by 5 in. in length. The explo-
sive has been cast onto a steel surround enveloping a 1/16 in.

x 1/16 in. cylindrical steel fragment. The charge is initiated with
a No. 8 electric detonator in conjunction with a 1-5/8 in. x 1/2 in,

tetryl booster.

The projector was originally designed utilizing a flat woods
metal surround; this design was inadequate because the woods metal
would not disperse and was causing excessive target damage in the
vicinity of the crater. At this point the woods metal surround was
made conical in shape in the hope that a component of velocity in the
radial direction would disperse the surround; this attempt also
proved futile., It was subsequently found that a surround made of
cold rolled steel produced the desired results. The steel surround

was conical in shape with an interior and exterior apex angle of



*oTFq00foad

T2938 w9T/T X w9T/T ® Burioefoad oS1eqo g *dwod ug X w8/§ T 203 30Td swT3 *sA eouwysid e-1 *3g
(ces V) emty
00Y 00¢ 002 00T 0
T T ] T 0
SO
- 4 - 0¢
=
288 (9ST*0 + XYT°E) = % - &
®
)
g
- -1 001
L)
L )
~ \ —10st
m 1 _ 1




(a) (b)

Fig. I-3 Flash radiographs of hypervelocity projectiles in flight: (a) 3 km/sec
projectile ; (b) 4 km/sec projectile.




1759; the fragment is contained in a hole drilled through the apex
of the surround. Dispersal characteristics are quite good; at a
standoff of 12 in. the surround disperses outside a 3 in. circle.
With dispersal characteristics of this quality, all the secondary
fragments produced by the surround can be eliminated by firing the

projectile through an orifice.

The distance-time data for the projectile are presented in
Table I-1 . Figure 1-2 is a graphical representation of these data;

a linear fit by least square methods produces the equation

(3.14x + 0.156)u sec

ct
1

= 3.18 km/sec .

<
|

The recovered mass of the projectile has the value 0.0234 * 0.0010
grams. A flash radiograph of the projectile in flight, shown in

Fig. 1-3(a), shows that the projectile is intact.

L, km/sec Projector

Since continued investigations with point initiated solid
charges led to the conclusion that the maximum velocity attainable
by this method was about 3 km/sec, a different explosive technique
was sought for the attainment of higher velocities, Experiments

by other investigators in this field have indicated that higher

velocities may be attainable through the use of peripheral initiation.

It was noted that a critical feature of peripheral initiation is
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Table I-1. Tabulation of distance vs time data for the 3 km/sec fragment
projector. The projector utilizes a 1-5/8 in, x 5 in. Comp. B
charge and 1/16 in. x 1/16 in. steel fragment.

- Distance Tdime Distance Time

. (cm) («sec) (em) (# sec)
- L6.0 Ul 70.0 214.5
46.0 k.5 70.0 209.6
hae )46.0 1hl.5 llo 00 352 .0
70.0 215.9 110.0 354.9
N 70.0 216.9 110,0 359.3
. 70.0 216, 1.0 3.4
70.0 216.9 141.0 Lh6.8
70.0 218.1 141.0 45,8
70.0 21h.7 11.8 L51.3
70.0 215.0 142.8 L450.5

j Table I-2. Tabulation of distance vs time data for the L km/sec fragment
: projectcr., The projector is a peripherally initiated Comp. B
charge with an.£/d ratio of 0.8,

Chronograph Flash Radiograph

Distance Time Distance Time
(cm) (M sec) (cm) (& sec)

: 30.5 T1.7 32.0 4.0
| 30.5 71.0 62.0 150.0
: 30.5 73.2 61.0 146.0
, 70.0 168.6 61.3 157.0
| 70.0 175.2 577 141.0
- 70.0 169.9 58.9 149.1
100.0 248.4L 61.1 157.0

: 100.0 252.1 102.2 257.0
v 100.0 266.1 104.0 262,0
152,04 396.6 108.9 287.L

152.4 387.6 113.6 286.8

152.4 399.5 112.2 287.1

110.6 287.3

——-




the charge length to diameter ratio and that maximum projectile
velocities are obtained when this ratio has the value O.gl .

Making use of this information, a successful projector in the

L, km/sec region was designed. The pertinent features of this pro-
jector are shown in Fig. 1-1(b). It is a 1-5/8 in x 1.3000 in.
Comp, B (60RDX/LOTNT) cylinder, cast onto a conical steel surround.
A 1-5/8 in. x 1 in. lucite plug is fixed to the top of this
cylinder, around which another 1/4 in. of Comp. B has been cast.
The latter casting is the peripheral initiator. A tetryl booster
is fixed to the top of the charge. The booster is initiated with a
length of primacord (PETN) detonated with a No. 8 electric detonator.
The primacord is imbedded in a machined luc ite holder to ensure

co-axiality throughout the projector,

The projectile material is No. 26 music wire machined to a
length of 1/16 in. It was found that this type steel remained intact
during the high acceleration period more comsistently than drill rod
or mild steel. Recovered mass data for this projectile has not yet

been completed, but flash radiographs show that it is staying

1/ R. J. Eichelberger, W, F. Donaldson, J. A, Dreesen, "The
Peripherally Initiated Fragment Gun", Misznay-Schardin Effect,
Carnegie Institute of Technology, Contract No. DA-36-061~ORD-122,
August 31, 1952,
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intact approximately 90% of the time. A typical radiograph of the

intact fragment may be seen in Fig. 1-3(b).

The distance-time data is tabulated in Table I-2; and is repre-
sented graphically in Fig. 1-4. The equation for the curve has been

derived wusing air drag considerations and has the form

2m A
f 1 | (exp PATE o) -1 |=4.95 « 10% | (exp 0.508 x 1074) -1 |4 sec
Py Af Vs 2mf

V, exp (- Pg Ar s) = 0.398 exp (- 0,508 -« 10745 ) em/u sec
mg

where me and A, are the mass and cross sectional area of the fragment
£ f

respectively; and Py is the density of air.

Conclusion

In the development of the projectors discussed in the foregoing
pages various aspects of hypervelocity projecting techniques became

apparent and are enumerated below.

(1) A point initiated, solid, unconfined charge of Comp. B
produces a maximum projectile velocity of 3.2 km/sec.
This is in good agreement with experimental results from
flat plate projection. The possibility still exists
however, that other explosives with higher detonation

rates, could produce higher velocity projectiles.




(2)

(3)

(4)

12

In all projectors tested, one of the most critical features
of the charge assembly is co-axiality. Lack of co-axiality
results in loss of accuracy, velocity, and consistency.

This was particularly noticeable for peripheral initiated

charges,

Associated with increasing the velocity of projectiles is
an increase of impulsive load delivered to the projectile,
As this load increases, the metallurgical aspects of the
projectile material become more important. Increases in
both hardness and strength become necessary in order that
the projectile remain intact. Treated drill rod pro-
jectiles such as those used in the 3 km/sec projector,
does not stay intact when used in the 4 km/sec projector,
hence, a material of higher strength was used successfully
(music wire). In view of this, it is recommended that

a thorough investigation be conducted to find suitable

materials for the higher velocity projectiles.

Air drag effects start to become noticeable when working
with velocities above 3.5 km/sec and the standoff becomes

an important factor.
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Chapter II - Spacial Distribution of Fragments Behind Thin Targets.
- R. K. Becker and R, Vitali

Introduction

The work covered by this chapter deals with the spacial distri-
bution of material emanating from the rear of thin targets. The
material includes projectile particles, ejected target material, and
spall. The term "spall fragments" is sometimes used loosely here
and is intended to mean any of these materials., The targets were
penetrated by a projectile having about 3.2 km/sec velocity and
about 23.5 mg mass. The scope of the work involves five target
materials, 3 to 5 target thicknesses, and two obliquities (0° and
60°). Most of the data obtained are associated with a weighted count
of the number of particles ejected into the space behind the target
as a function of some spacial coordinate. Also presented, are data
associated with the mass and size of the spall fragments., Data
relative to the velocity of the material are not sufficient in

quality or quantity to warrant discussion at this time.

Experimental Procedure

Figure II-1 illustrates the arrangement of apparatus used
for the 60° obliquity shots; the arrangement for 0° obliquity shots
was similar except that a = 0. The figure shows a fragment pro-
jector (explosive charge) mounted on a fixed steel shaft. The

charge is positioned so that the fragment is projected through a
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small hole in a blast plate. The dispersal characteristics of the
surround are such that none of the surround fragments are propelled
through the hole; they are instead, absorbed by outer areas of the
blast plate. The target plate is mounted horizontally in a steel
frame behind the blast plate. At a distance a below the target
plate is the witness target consisting of 1 mil thick aluminum foil
on top of 1/2 in. celotex. The witness target is 18 in. square.
For counting purposes, the witness target was divided into from 15
to 25 concentric circles having successively increasing radii of
1/2 in. The origin of the family of circles, for both the 0° and
60° shots, is directly below the hole in the target plate (at point
0 in Fig. II-1). In practice the origin was determined after the
shot to allow for errors in marksmanship and the circles were
actually contained on a transparent templet. The templet was
centered on the witness target and the number of spall particles was

counted in each ring.

It seemed desirable to be able to present the data in some
manner that would indicate the relative population densities of spall
particles projected into various space elements beyond the target
plate. The count by rings would obviously need to be weighted
because the count was taken from rings having unequal areas, rings
which are unequal distances from the source (bottom of the hole in
the target plate) and rings which have different orientations with
respect to radius vectors drawn from the source. One method of

weighting the original count would be to find the incremental change
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in solid angle () between members of a family of cones defined by
a point located at the source and the rings on the witness target.

The A . increments can be found from the relation

21T a r?
AL = —

(r + :312)-2
r

where a 1is the perpendicular distance between the target plate and
witness target, and r is the radial distance on the witness target
measured from point O, The equation given above can be derived by
applying the basic definition of the solid angle to the particular
geometry of the experimental set-up used here, Weighting is
accomplished by using the quantities 1/ A Q as weighting factors.
The resulting weighted quantities may then be thought of as popula-
tion densities since they represent the number of particles per unit
solid angle. The "densities" can then be plotted against coordinates

which define the direction in the space behind the target.

Dispersion Data at Zero Degrees Obliquity

A representation of these data is accomplished by plotting the
population densities against the solid angle £1 . The data need to
be plotted against only one coordinate because of circular symmetry;
the "densities™ are independent of a coordinate ¢ which defines
angular positions around the rings (this is not so for the 60O obliq-

uity data). The five groups of data corresponding to five target
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1.0

1.2

Plot of the dispersion data obtained from firing 3.17 km/sec projectiles

through various thicknesses of Aluminum 25-0 thin targets,

The spall

particles were counted with the aid of a witness target (1 mil aluminum
foil on top of cellotex) located 6.8 inches from the thin target plates.
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target (1 mil aluminum foil on top of cellotex) Located 6.8 inches from
the thin target plates.
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materials are plotted and tabulated in figures and tables identified

below:
No. No.
Target Material of Thicknesses of Shots per Figure Table
Tested Thickness No. No.
Al. 25-0 5 5 II-2 ITI-2
Al. 175-0 5 5 II-3 II-3
Al. 2024-T3 3 3 II-4 - II-4
A - -
812811 3890-167) b ’ =5 1
Lead 5 5 II-6 I1-6

Note: Table II-1 contains miscellaneous data
and information applying to all the
target materials, e.g. Barcol hardness
number, maximum penetration in thin
targets, and total number of particles
per thickness of material.
Certain qualitative aspects of the data are similar for all five

target materials:

(1) The preponderance of data shows that the population density
of spall particles is maximum in the first element of solid

angle determined by the center ring on the witness target.

(2) The population density is a monotonically decreasing func-
tion of the solid angle and/or dispersion angle 6 (a scale
of 8/2 is included at the top of each plot). The densities
decrease to one-half their maximum values at @/2 values
ranging from about 59 to 200; a value of about 10° is per-
haps typical. At 8/2 = ASO, the densities are essentially

negligible,
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(3) Variations in the data are quite large. The tables give
estimates of the standard deviation per individual
observation associated with repeated counts of particles
per ring. Fo:» the three different types of aluminum
targets and for magnesium the standard deviations average
out to be about 20% as large as the mean count per ring;

For lead targets a similar value of 40% is obtained.

(L) A very definite correlation exists between the total
number of particles produced and the target thickness -
the smallest thickness corresponds to the greatest number
of particles. This trend may be observed by inspecting
data in Table II-1l; for example, the aluminum 25-0 target
plates produced 433, 284, 177, 60, and 38 total fragments
for corresponding thicknesses of 1/16, 2/16, 3/16, L/16,
and 5/16 in. The same trend is evident when one inspects
the five plots except that here the total number of
fragments have been weighted and divided among the various
elements of solid angle., The plots illustrate the
correlation very nicely for relatively large solid angles
and/or dispersion angle (8/2 > 15°). It may be noted,
however, that in some cases when 6/2 < 15° (or Q) ¢ 0.2)
that "crossover™ points do occur; these are not believed
to be significant and are probably due to the fact that the
A £ increments are considerably smaller near the origin

resulting in a loss of statistical significance.
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It should be pointed out at this time that although the greatest
number of particles correspond to the smallest target thickness, the

greatest number of particles do not correspond to the greatest mass.

The mass of material going into the space behind the target
was determined via water recovery techniques. The particles were
filtered out, dried, and weighed., The particles were then given a
chemical test for iron (which is presumably the recovered projectile
mass). A discussion of the recovered projectile masses is found
in Chapter III, The remaining material was assumed to be ejected
target material including spall and possibly some debris. These

data are tabulated in Table II-7,

The total recovered masses do not decrease monotonically with
target thickness as was the case for the total number of particles.
A typical example is that of the aluminum 25-0-data; total recovered
masses of 35.6, 73.6, 96.2, 37.7, and 7.4 mg correspond to thick-
nesses of 1/16 in. through 5/16 in. respectively. A maximum mass of
96.2 mg is recovered from the 3/16 in. targets. Similar data is
obtained for aluminum 175-0, aluminum 2024-T3, magnesium alloy, and
lead (see Table II-7). Thus, since the number of particles is
maximum for 1/16 in. targets and the masses maximum for 3/16 in.
targets, one would suspect that the 1/16 in. targets produced

particles of smaller average size; this is apparently the case.

A limited amount of data pertaining to the size of particles
has very recently been obtained. These data are for aluminum 25-0

targets having thicknesses of 1/16 in. and 3/16 in. The material
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behind the target was collected in water, filtered and sorted out
according to size with the aid of screens. Each screened group of
particles was then weighed. The results between the 1/16 in. and

3/16 in. thick targets are compared below:

1/16 in. (10 shots) 3/16 in. (5 shots)

Screen Average No. of Average Average No. of Average
Size Particles Mass Particles Mass
(mg) (mg)
8 0.0 0 Ouh 3.3
18 5.2 8.1 15.0 67 .4
26 27,1 12.6 12.4 11.0
60 162.0 14.3 5642 11.1
100 224.0 5.7 86.0 L3
200 L4L6,0 3.5 175.0 3.8
Total 86443 Ll .2 345.0 100.9

Average

The screens had a square mesh with a side dimension of 93.7
mils, 39.4 mils, 22,5 mils, 9.8 mils, 5.9 mils, and 2.9 mils for the
No. 8 through No. 200 screens respectively., The table above gives

the screen size which would not allow the particle to pass through.

It should be pointed out that when one compares the 1/16 in.
and 3/16 in. data in the above table a certain inequity is apparent.
For a given screen size, the mass per particle is greater for data
obtained for the 3/16 in. targets. This would indicate that the

screens do not necessarily screen out particles of equal mass and




8 e § [ IR | [Ipp— & oemoe §
1 . ) b
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that the geometrical shape of the particles has some effect on the

screening procedure., Nevertheless, some interesting and useful

information is obtained from these data.

(1)

These data are in agreement with the dispersion data in
that the smaller target thickness corresponds to the
greater number of fragments. It should be mentioned that
in each case the water recovery count was about twice the
count from witness targets; however, it should also be
noted that one-half of the count from water recovery
techniques is represented by particles counted on the

No. 200 screen. These particles are extremely small and
a significant number of them are quite likely dust or
debris. If these particles are discounted then the count

by the two techniques is the same.

Despite inequities on a screen size basis, the data from
the screened particles do clearly indicate that the sigze
or mass per particle is greater for 3/16 in. thick plates.
This accounts for a previous result (from mass recovery
data and dispersion data) which showed the 3/16 in. plates
yielding fewer particles of greater total mass as com-
pared to the greater number of particles with lesser mass

obtained for 1/16 in. targets.
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Dispersion Data at 60° Obliquity

Target materials investigated at 60° obliquity included at
least 3 thicknesses of 25-0, 175-0, 2024-T3 aluminum, and lead. An
inspection of the witness targets revealed that the distribution of
spall particles was not independent of ¢ (the polar angle assoc-
jated with the rings on the witness target). The lack of circular
symmetry results in a distri*ution of particles that is a function
of both  and Q.. Thus the basic data are represented by two
plots for each target material. One set of plots shows the actual
number of fragments plotted against polar angle intervals, For
the three types of aluminum the A ¢ intervals are lO°; for lead they
are 20°. @ =0 is an azimuth on the witness target corresponding
to the direction of the horizontal component of velocity of the
projectile. The second set of plots is similar to the ones that
were presented for the zero degree obliquity data with two excep-
tions: (1) In most cases the A O intervals were calculated
from A r intervals of 3/2 in. rather than 1/2 in. (2) The
"density" versus () representations are restricted to a @ interval
symmetrically spaced about the regions where the maximum number of
spall particles were counted. The reason for different choices in
the size of A @ and A Q lies in the statistical character of
the data. It was felt that the size should be large enough to
smooth out the data and at the same time small enough to retain
reasonable sensitivity. Information relative to the size of the in-

crements chosen may be found in the tables and plots.
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The figure and table numbers pertaining to the data sets plus

other relevant information are tabulated below:

No. of No., of
Target Thicknesses Shots per Figure Table
Material Tested Thickness No. No.
Al, 25-0 3 5 II- 7a and 7b II-8 and II- 9
Al, 245-0 3 5 II- 8a and 8b II-10 and II-11
AL, 2024-T3 3 3 II- 9a and 9b II-12 and II-13
Lead L 5 II-10a and 10b II-14 and II-15

The overall character of the data is such that the data appear
to belong in two distinct groups: (i) the three aluminum metals,
(ii) lead. The separation is due to distinct differences in the
distribution of ejected material behind the target. These differences,
in addition to other features of the data, are summarized below.
Figure II-11 is presented at this time to aid in the description of

certain geometrical quantities used below.

(1) The distribution of particles ejected into the space behind
the target does not exhibit the circular symmetry noted for
0° obliquity data. At 60° .obliquity, the angular (¢)
distribution for the three aluminum metals exhibits strong
directional characteristics in favor of the "forward"
direction (¢ = 0°). Lead, on the other hand, shows some-
what weaker directional tendencies and the distribution is

maximum in the "backward” direction (@ = 180°).
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Table II-8. Tabulation of the dispersion data (number of fragments vs polar

Polar Angle Interval

angle) obtained from tests with aluminum 25-0 targets at 60°
obliquity.

Average Number of Fragments Counted in A ¢

Target Thickness (in.)

(ceg) (1/32) (1/16) (3/32)
N ' N o N T
0 to 10 6he8  19.2 hr i 17.4 16,6  10.3
10 to 20 32,2 21.0 20,2 16.5 9,0 5.y
20 to 30 2l.h 9.8 15,0 12,1 5.0 1.8
30 to 4O 12.8 742 9t 6.7 3.2 2.2
LO to 50 8.8 6.3 6.0 3.6 3 2.7
50 to 60 6. 6.3 6.2 3.1 1.8 2.7
60 to 70 7.0 2.7 2. 1.3 0.6 1.3
70 to 80 5.0 0.9 3.0 207 - -
80 to 90 L6 2.2 2.6 2.7 -
0 to =10 6y 25.5 52.8 22.8 21k 13.4
=10 to =20 35.2 20.1 21.8 9.8 18.2 8.1
-20 to -30 29.2 15.2 12.0 2.7 7.2 3.6
-30 to -LO 15.4 4.0 8.8 2.7 hos L6
-hO to -50 120h 706 9oh 50h h.2 1,8
~50 to =60 10.2 5.8 7.2 1.3 2.8 1.8
"'60 tO "70 70h 301 )-l-oh 202 - -
~70 to -80 5.8 3.6 5.2 2.2 - -
=80 to ~90 502 306 308 301 -
Notes: (1) The polar angle intervals given above are sectors of a circle.

The circle lies on the witness target with its center directly
beneath the hole in the target plate.

(2) @ is the standard deviation per individual observation.
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Table II-10. Tabulation of the dispersion data (number of fragments vs polar
angle) obtained from tests with aluminum 24S-0 targets at 60°

obliquity.
Average Number of Fragments Counted in A
Polar Angle Interval Target Thickness (in.)
(deg) (1/16) (3/32) (2/16)

N T K (g N i

0 to 10 5ls 5.8 30,2 26.L 2.2 0.9
10 to 20 38.4 5.6 14.8 6.7 1.0 1.3
20 to 30 25.2 Lh.2 11.8 5.8 3.0 4.0
30 to L4O 15.6 1.6 9.0 L0 3.2 1.8
LO to 50 8.6 1.8 7.0 3.1 2.2 0.9
50 to 60 9.8 1.4 3.6 0.h 0.6 O.h
60 to 70 5.0 1.0 2,8 2.2 0.8 Oy
70 to 80 6.1 0.6 2.6 2,2 - -
80 to 90 h.2 0.6 5.2 2.7 - -

0 to -10 45.0 10.4 26.6 11.6 2.8 1.8
-10 to =20 27 4 2.2 16,2 6.7 2.8 1.8
-20 to =30 20.0 0.6 10.6 k.0 1.8 2.2
-30 ‘to "hO 15.)4 3.6 ).J..O 3.1 2.8 202
=40 to =50 11.0 0.8 5.8 2.2 1.0 0.9
-50 to =60 10.h 2,2 L6 3.1 1.0 Le3
"60 ’bO "70 9.6 1.8 208 3.1 002 0.).].
-70 to ~80 6.0 2.6 5.0 5. - -
-80 to =90 6.4 1.0 3.kt 3.1 - -

Notes: (1) The polar angle is interpreted to mean sectors of a circle.,
The circle lies on the witness target with its center directly
beneath the hole in the target.

(2) ¢ is the standard deviation per individual observation.
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Table II-11. Tabulation of the dispersion data (population of fragments vs solid

angle in the polar angle interval -10°Z @ . 10°) obtained from
tests with aluminum 24S-0 targets at 60° obliguity.

Average Number of Spall Fragments Counted in AL

Target Thickness (in.)

Solid Angle (1/16) (3/32)
aQ A Ux 100 i iy i T

0.200 1.1 1.8 1.8 1.8 1.8
(162) (162)

0.702 27.9 7.6 3.6 5.8 3.6
(272) (208)

1.319 3h.2 17.8 6.3 1Lh.6 12,9
(520) (L27)

1.916 33.2 23.6 9.4 15,2 12.9
(711) (L58)

2.h39 29.1 19.6 10.3 13.8 12.5
(673) (L7k)

2.880 2lly 13,k 1h.3 5.0 k.S
(549) (205)

3.2l5 20.3 5.1 7.1 0.8 1.3
(266) (39)

3.5L9 16.9 2.2 3.1 0.0 0.0
(130) (0)

3.639 5.0 0. 0.5 0.0 0.0
(80) (0)

Notes: (1) The numbers in parentheses are N/Afl  and represent the population

of fragments per unit solid angle.

(2) The solid angle given is the end point of the interval.

(3) The af intervals are associated with 20° of arc and a A r width
of 1.5 in. except for the last interval where A r = 0,5 in. The
distance between target plate and witness target is 5.8 in,

(4) ¢ is the standard deviation per individual observation.
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Lo

70
8o
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-50
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Tabulation of the dispersion data (number of fragments vs polar

angle) obtained from tests with aluminum 202L4-T3 targets at €0°
obliquity.

(deg)

to 10
to 20
to 30
to 4O
to 50
to 60
to 70
to 80
to 90

to
to
to
to
to
to
to
to
to

S

~-10
=20
-30
-40
=50
-60
-70
~80
-90

(1)

(2)

Average Number of Fragments Counted inA#®

Target Thickness (in.)

(1/16) (3/32) (2/16)
& o N a N o
39.0 1.7 27.7 12.0 2.3 -
26.0 SCL- 17.0 70)4 107 -
13.3 107 1107 807 1 -
18,0 5.7 6.3 3.5 1 -
1203 70h 503 5-2- 1 -
8.7 5.2 3.7 2.2 0 -
5.0 3 3.7 2.2 - -
5.0 30)-l- 107 005 - -
).I..O 107 3-7 107 - -
39.0  16.8 18.7 L7 1.7 -
277 11.6 13.0 L7 1.3 -
19.7 609 8-0 209 003 -
10.7 L7 La7 2.9 1.0 -
9.0 209 2.7 1.7 107 -
5.7 2.9 2.0 1.7 0 -
6.0 107 307 2.9 - -
5.3 )4.0 1.0 - -
he3 2.2 1.7 0.5 - -

The polar angle intervals given above are sectors of a circle.
The circle lies on the witness target with its center directly
beneath the hole in the target plate.

¢ is the standard deviation per individual observation.
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Table II-13. Tabulation of the dispersion data (population of fragments vs solid

angle in the polar angle interval -10°£ @, 10°) from tests with
aluminum 2024-T3 targets at 60° obliquity.

Average Number of Spall Fragments Counted in A €

Target Thickness (in.)

Solid Angle (1/16) (3/32) (2/16)
Q  Aax10° Foo0 i ip Foooo
0.161 8.9 3.0 2.3 2.0 1.7 0.3 0.6
(337) (224) (3k)

00578 2301 )403 102 503 508 201 305
(186) (229) (91)

1.117  29.9 13,6 11.5 9.3 2.3 1.3 2.3
(L55) (311) (43)

1.666  30.5 12,1 L0 10.3 5.2 0.0 0.0
(397) (337) (0)

2,168  27.9 18.3 1.0 6.7 2.9 0.3 0.6
(656) (2L0) (11)

2.60L  24.3 13.L 9.2 9.0 1.2 0.0 0.0
(551) (370) (0)

2,976 20.6 9.4 3.5 3.0 1.7 0,0 0.0
(Ls6) (1L6) (0)

34290  17.L 3.7 345 0.6 1.2 0.0 0.0
(213 (3L) (0)

3473 10.1 0.3 0.6 0.0 0.0 0.0 0.0
(30) (0) (0)

Notes: (1) Numbers in parentheses are N/AQ  and represent the population

of fragments per unit solid angle.

(2) The AN intervals are associated with circular rings having 20°
arc and a A r width of 1.5 in. except for the last interval where
Ar = 1,0 in. Distance between target plate and witness target
was 6.5 in,

(3) The solid angle given is the end point of the solid angle interval.

(4) 6 is the standard deviation per individual observation.,
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Table II-1l.

at 60° obliquity.
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Average Number of Fragments Counted in A@ (A @ = 20°)

Polar Angle

Interval (deg)

60

80
100
120
140
160
180
200
220
2ho
260
280

to 80

to 100
to 120
to 1h0
to 160
to 180
to 200
to 220
to 240
to 260
to 280

to 300

Notes:

(1/16)

N ()
5.0 3.6
7.8 6.3
9.0 k.0
9.2 k.5
9.2 6.7

12, 10.3
4.0 17.9
10,0 7.2

9.2 b9
T 3.6
5.2 0.9
b6 LeO

(1) The polar angle intervals given above are sectors of a circle.

Target Thickness (in.)
(3/32) (2/16)

N T N T
2.6 3.1 2.6 2.2
hoh 1.8 2.8 1.8
5.2 2,2 L8 1.8
L8 5.8 3.2 1.8
9.4 11.2 L2 3.6
6.8 LS 3.2 1.3
9.2 7.6 3.2 2.2
8.2 9. 2.8 3.
9.6 7.6 2.2 2.7
T b9 2. 0.9
5.8 1.8 2.2 1.8
2.4 1.3 2.6 1.3

Tabulation of dispersion data obtained from tests with lead targets

(5/32)
T O
0.2 0.l
0.2 Ous
0.2 Ou
2.2 2.2
2.0 1.3
2.0 1.8
2.2 2.2
1.2 2.2
1.2 0.9
0.2 0.
0. 0.9
0.2 0.

The circle lies in the plane of the witness target with its center

directly beneath the hole in the target plate.

(2) ¢ is the standard deviation per individual observation.
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This particular character of the data may be observed by
examining the plots which show the number of fragments
versus polar angle (¢f) - Figs. II-7a, II-8a, II-9a, II-10a.
A typical example for the aluminum groups is the data

from 1/32 in. aluminum 28-0 targets (Fig. II-7a, Table II-8);
33% of the total number of particles were found in the

20° interval (- 10° ¢ @ < 10°) and about 90% were found in
the forward semi-circle (- 90° ¢ @ ¢ 90°). Negative

angles are measured counterclockwise from g = 0°, Comparing
this with 1/16 in. lead target data, one finds that 33%

of the total number of particles were found in the 4,0°

interval (160° ¢ @ ¢ 200°) and 66% in the rear semi-circle
(90°C ¢ < 270°).

The marked differences in angular distributions between
data for lead and the aluminum metals suggest differences
in basic impact phenomena. The results obtained for lead
here can be said to be in qualitative agreement with re-
sults froml/ radiographs of impacted lead targets. The

radiographs show material coming off the top surface of

;/ G. M. Bryan, "Cratering of Lead by Oblique Impacts of

Hypervelocity Steel Pellets", Fundamentals of Shaped
Charges, Twenty-second Quarterly Progress Report,
Contract No. DA-36-061-ORD-513, April 30, 1961
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the plate with a greater amount of material ejected in
the "forward" direction., Thus one might conclude that, in
order to conserve radial momentum,the material coming off
the bottom of a thin plate should have a preference for

the backward direction.

Another set of plots illustrate the radial distribution
of particles striking the witness target. These plots
give the population density as a function of the solid
angle; however, the representation is in a restricted 7}
interval. The restricted @ interval is indicated on each
plot and is an interval symmetrically spaced about the {
value that corresponds to the maximum number of fragments.
Again the lead data is different in character from the

three aluminum data sets,

The lead plot (Fig. II-10b) shows a maximum density at
the origin of circles on the witness target (at 0. =0),
The density decreases continuously in the radial direction

corresponding to ¢ = 180°).

Plots for the three aluminum metals show maximum popula-
tion densities occurring at () values ranging from 2,0

to about 2.6 . In terms of 6/2, this would correspond to
from 47° to about 57° (60° corresponds to the path of the
projectile). Thus, one finds the maximum density of
particles siightly "refracted" from the path of the

pro jectile.
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The total number of particles decreases with the target
thickness (see Table II-~l). This result is noted for all
four target materials; a similar result was obtained at

normal incidence.

Another available set of data is the mass recovery data;
these are tabulated in Table II-16. The table shows a
maximum recovered mass obtained for 3/32 in. thick targets
for all four materials., Again, this does not correspond
to the thickness for which the maximum number of particles
is observed since the maximum number is observed for the
thinnest targets tested. Although no "size" data are
available, it seems reasonable to conclude that 3/32 in.
thick targets yielded larger size particles; this was the
conclusion arrived at for tests at normal incidence based

upon screen tests.,

Thus ends the presentation and discussion of data; a brief
summary of both normal incidence and 60o obliquity data

seems desirable and is given below:

For all target materials and target thicknesses impacted
at normal incidence, the distribution of fragments is
symmetrical about, and maximum along, the extended path

of the projectile. The population density decreases with
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Table II-16., Tabulation of mass recovery data obtained by water recovery tech-
niques. The thin targets were impacted at 60° obliquity by 3.17
km/sec projectiles.

Recovered Masses (mg) + T

Target Thickness (in,)

(1/32) (1/16) (3/32) (2/16)
Alo 2S"O
(3 shot data)
Total Recovered 38.5 * 1.7 55,2 4.2 75.6 ¥ 3.9 65.4 t 5.7
Mass (mg)
Recovered Projectile 16.6 ¥ 0.5 14.0 ¥ 0.9 13.2 ¥ 1.4 8.9 * 0.5
Mass (mg)

Target Thickness (in.)

(1/16) (3/32) (2/16) (5/32)
Alc 175-0
(3 shot data)
Total Recovered 77.1 % 2.0 96.9 * 5,1 80.5 * 6.6 -
Mass (mg)
Recovered Projectile 13.3 * 1.1 1.5 * 0.9 6.7 ¥ 0.7 -
Mass (mg)
Al. 202L-T3
(3 shot data)
Total Recovered 78.1 % L5 87.5 ¥ 7.8 63.6 ¥ 7.5 -
Mass (mg)
Recovered Projectile 13.6 ¥ 1.6 13.8 * 1.3 6.9 2.1 -
Mass (mg)
Lead
(3 shot data)
Total Recovered 22 ¥ 5 29k * 16 293 ¥ 35 232 % 9
Mass (mg)
Recovered Projectile 2.7 ¥ 0.4 2.3 ¥ 0.y 1.0 ¥ 0.2 0.6 * 0.0

Mass {mg)

Note: 07, is an estimate of the standard deviation of the mean,
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increasing solid angle (or dispersion angle) in a quali-
tatively similar manner for all target materials tested,

including lead,

At 60° obliquity, the distributions for the three aluminum
metals are qualitatively similar but differ appreciably
from the distribution for lead. Maximum density for lead
is observed along a line extending from the hole and
perpendicular to the target plate; the particles are not
symmetrically dispersed about this line but show a

preference for the "backward" direction,

For the three aluminum metals, the maximum population
density occurs along a line that may be described as being
slightly "refracted" from the path of the projectile

o
(several degrees to 10 M"refraction angle").

For tests at both normal incidence and 60° obliquity, the
maximum total number of fragments is obtained from the
thinnest targets and the total number decreases monoton-
ically with increasing thickness. The maximum recovered
mass, however, does not correspond to the maximum number
of fragments. Maximum recovered masses are observed for
about 3/16 in. targets at normal incidence and 3/32 in.
thick targets at 60° obliquity. Screen tests show that the
size of the particles account for the lack of correlation

between number and mass.
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Chapter III - The Perforation of Thin Plates by High Velocity Fragments.
- R. W. Watson

Introduction

Since its inception, the major effort in the hypervelocity re-
search field has been directed toward the solution of the problem of
cratering in semi-infinite targets. However, the impact failure of
thin targets, particularly the light structural alloys, has become
an increasingly urgent problem. For the past year and a half our
research group has been engaged in an extensive experimental program
to determine the parameters governing the failure of thin plates
under the impact of high velocity fragments. A wide variety of
experiments have been completed. The results of several of these
investigations have led to the formulation of a simple model that
adequately describes certain aspects of the perforation phenomena.
This model is discussed in Section A of this Chapter. The qualita-
tive features of these perforation studies, including perforation
diameters at normal incidence and 60° obliquity are discussed in

Section B,

Section A

Recovery Experiments - The 3.2 km/sec projector discussed in

the first chapter was first used in an experimental study to deter-
mine the composition of the material ejected from the back surface

of thin plates during the perforation process. For this purpose
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Calibration Trace

Impact Flash

1/74
~—— Magnesium Plote

X-ray Burst

Fragment
{Residual Velocity - 978 meters/sec)

Fig. -3 Typical radiograph and timing frace used in determining residual fragment velocity.
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various thicknesses of aluminum and magnesium alloys were securely
attached to a water collection pot and impacted with 3170 m/sec
fragments, Care was taken to assure that only the material projected
through or spalled from the back surface of the plate was collected.
The collected material was then chemically analyzed for steel
content. The results of these tests, shown in Fig. II1I-1, show that
within experimental error, all of the impacting fragment mass is
projected through the target whenever complete perforation takes

place.

Residual Velocity Measurements - Visual inspection of the

material collected in the recovery experiments indicated that the
fragment perforated the thinner targets (1/16 in,) without under-
going serious deformation. As a result of this observation an

extensive flash radiographic program aimed at determining emerging

fragment velocity as a function of target thickness was initiated.
The experimental arrangement used in this investigation is depicted
in Fig. III-2. The two delay networks are adjusted in a manner that
allows the fragment to be viewed at a sufficient distance behind the
perforated plate to permit accurate distance measurements. Time
measurements were accomplished by recording the interval between

the luminous flash occurring at impact and the X-ray burst., A
typical timing trace is shown in Fig. III-3 along with a radiograph
showing a fragment 110 x sec after impact. The two vertical strips
on either side of the radiograph correspond to aluminum and steel

wedges attached to the film cassette; these wedges assist in



———
.

b v B

68

identifying the material revealed in the radiographs. The individual
results of this series of tests are presented in Table III-1. The
spread in the data obtained under a given set of experimental condi-
tions is greater than anticipated on the basis of variation in
impacting fragment mass or velocity. This probably can be attributed
to either minor variations in fragment orientation at impact or to

small differences in the physical properties of the target materials.,

Theory and Discussion - At an impact velocity of 3170 m/sec

the initial dynamic pressure far exceeds the ordinary yield strength
of the target materials used in this study and is, in fact, several
times the yield strength of the impacting fragment., However, the
impact phenomena described here cannot be entirely ascribed to

fluid impact where both the target and impacting body are treated

as fluidsl¢2{ The mass recovery experiments and the radiographic
investigation support this contention. In addition, the craters
produced in semi-infinite targets of the various alloys investigated,

unlike the hemispherical craters which are characteristic of pure

fluid impact, were deep and narrow and in many instances the fragment

;/ H. G. Hopkins and H. Kolsky, "Mechanics of Hypervelocity Impact
of Solids", Fourth Symposium on Hypervelocity Impact, April 1960.

2/ A. C, Charters, "High Speed Impact", Scientific American, Vol.
203, No. 4, October 1960.
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Table III-1l., Residual fragment velocity as a function of target thickness for a
3170 m/sec, 0.023 gm steel fragment perforating various light weight

alloys.
Target Thickness Residual Velocity
(in.) (m/sec)
28-0 175-0 2024 -T3 AZ51X,B90~L6T
( Aluminum) (Aluminum) (Aluminum) (Magnesium)
1/16 2566 2540 2358 2688
' 2469 2525 2185 2728
2566 2568 25L5 2725
2400 265} 2388 270l
2640 2567 2487 2783
Average 2528 2569 2392 2725
1/8 1935 1810 1579 2185
2056 1828 1800 1935
1558 1570 1794 2150°
1917 1757 1366 2060
2000 1648 1609 -
Average 1893 1722 1629 2082
3/16 1220 856 602 1985
111h 999 795 1541
1275 1010 723 1672
981 1433 63l 1371
1070 1102 573 162}
- - - 1660
Average 1132 1080 665 1642
1/k 916 - - 978
622 — - 966
507 - - 972
350 - - 1073
Los - - 920

Average 560 - - 981
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remains were found embedded in the crater bottom. If it is assumed
that the perforation process is completed before any marked radial
expansion of the impacting fragment can take place, then the follow-

ing simple analysis can be made.

Treating the target as an incompressible fluid, its resistance

to penetration can be expressed as
2
= 1 ;
P=3P, 2% *k (1)

where Pe is the target density and z is the instantaneous fragment

velocity.

This expression and variations of it have been used in a
variety of penetration theories . The term % Py z° is the stag-
nation pressure and represents the inertial resistance of the target;
the factor k accounts for the strength effects of the target in
resisting deformation. The equation of motion of the fragment then

becomes

me ¥ = - (L oy Ap 87 4k Ag) (2)

3/ R. J. Eichelberger, J. Appl. Phys., Vol. 27, No. 1, January 1956,

L/ Ernst 6pik "Researches on the Physical Theory of Meteor
Phenomena: 1, Theory of the Formation of Meteor Craters™, Acta
et Comm. Univ. Tartuensis, 1936,
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where

[ me = fragment mass = 0234 gm

py = target density = 2.7 em/cm

A, = fragment cross section (assumed constant) =
initial fragment area = 2.0 ° 1072 cm?

z = instantaneous depth in target measured from

the surface of the target.

i Since the radiographic data give 2z as a function of z the substi-
tution % = 2 %E considerably simplifies the treatment of Eq. (2).
Z
}» On making this substitution the equation of motion is integrated

once to give

A
k Af —‘&b——i“ 2
+ = Constant * e me . (3)

} The constant of integration can be evaluated from the condition that

g when z = 0, 2z = v the initial fragment velocity. Equation (3)

Q?

then reduces to

| Py, Af Z Py Af Z
a . - omp mge
[ z2 = vo2 e + 2kle -1 . (L)
P

%

The strength term k can be evaluated from the final condition that
i when z = 0, z = P, the maximum value of penetration observed in

semi-infinite targets of the material under consideration.

e )



-
F *»V-

72

Eomto e

1 T 1 T -

y i Aluminum 17S-0 1 f

T L T

I
3000 \ Aluminum 2S-0
2500

0 . | IS DR SR | ol [ T |

0 0.1 0.2 0.,30.4 0.5 0.6 07. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

—r T T T T T T

Magnesium Alloy - AZ 51X, !
e B9YO - 46T

¥ T ! T T T

Aluminum 2024 T -

1

Residual Velocity - meters/second
3
8

8 i
2000 |- ~ - g -
o
1500 |- - n Wl |
1P,
lOOOr . 5 . {
500 |- - - i
0 i | 1 ] 1 ] ] 1 :'

L 1 Il
0 0.10.2 0.30.4 0.50.60.7 0 0,1 0.2 0.3 0.4 0.5 0.6 0.7
Target Thickness - centimeters

Fig. III-4 Residual fragment velocity as a function of target thickness for a
0.023 gram fragment having an initial velocity of 3170 m/sec. The
data points represent the average of five individual measurements.
The smooth curves were calculated from theory.
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This method was used to calculate residual fragment velocity as a
function of target thickness for the various materials tested.

The results of the calculations, represented by smooth curves, are
shown in Fig. III-4 along with the measured values given in

Table III-1. As cau be seen, agreement between theory and experi-
ment is quite good. It should be pointed out, however, that the
method of evaluating the strength factor, coupled with the form of
Eq. (4) assures a reasonably good fit. Nevertheless, the model
described here does have some salient features of considerable

interest. They can be summarized briefly as follows:

(i) The values of the strength factor, k, calculated from
Eq. (4) are considerably in excess of the handbook
values of static strength for all of the materials
tested. The calculated values were 3,37, 4.86, 6.50,
and 4.92 all times lOlo dynes/cm2 respectively for the
25-0, the 175-0, and the 2024-T3 aluminum alloys, and
for the ASTM-~AZ51X,B90-46T magnesium alloy. The static
yield strength of each of these materials is of the
order of 1 - 2 * 10° dynes/cmz. If the strength factor,
k, has any real physical significance, the high values
observed here are probably due to an increase in
strength associated with a high strain rate. It is well
known that the strength of most material increases
markedly with increasing strain rate. Rough estimates

indicate that the strain rate involved here is in excess



Th

of 10° in. per in., per sec. There are no data avail-
able in this region for direct comparison purposes but
dynamic tests at strain rates of 104 - 10? in. per in.
per sec show increases in strength of from 2 to %O 8
times the static strength for a variety of mategigig¢_{

(ii) The appearance of the target density term in Eq. (4)
seems to be essentially correct. While the strengths
of magnesium and aluminum are comparable, their densi-
ties are considerably different, and yet, there is

equally good agreement between theory and experiment

for both materials.

John S. Rinehart and John Pearson, "Behavior of Metals Under
Impulsive Loads", The American Society for Metals, 1954.

G, I. Taylor, "Scientific Papers", Vol. 1, Cambridge University
Press, 1958.

H. Kolsky, Proceedings of the Physical Society, Vol 62, 1949.

Nelson W. Taylor, J. Appl. Phys., Vol. 18, November 1947.
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Since the fragment used in these studies had a fixed
geometry and initial velocity a rigorous test of the
general validity of Eq. (4) could not be made. However,
this equation can be rearranged to express ?, the maxi-
mum penetration, in terms of the target and fragment
parameters. In this form comparison with the work of

other authors can be made. The penetration formula is

F-—f_tn(1+ltv ). (5)

Py Ar

A series of experiments described by W. Atkins at the
Fourth Symposium on Hypervelocity Impact affords a
particularly interesting comparison. In his impact
experiments the total depth of penetration in a variety
of metals was determined as a function of impact
velocity. The projectiles used were 1/4 in. diameter
tungsten carbide spheres having a mass of 2.09 grams.
Among tﬂe target materials investigated was 1100F
aluminum, a material having physical properties closely
resembling those of 25-0 aluminum. The results of the
penetration tests with this material are reproduced in
Fig. III-5 along with a set of theoretical curves com-
puted from Eq. (5) using various values of the strength
factor, k, along with the parameter involved in the NRL

experiments. The lower curve was computed using the
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value of k determined from our results with 25-0
aluminum. As can be seen agreement between theory and
experiment is very good at the higher impact velocities.
The upper curve was computed using the handbook value

of the yield strength of aluminum. The central curve

was fitted to the data in the low velocity region by
using a value of k computed froi the data point at

1500 m/sec . Taken together, the results shown in

Fig. III-5 indicate the value of k is not truly constant
for a given material but may represent a strength aver-

aged over the entire penetration velocity spectrum.

(iv) For historical accuracy, it should be pointed out that
Eq. (5) is identical to a penetration formula derived
by J. V. Poncelet in 1829 . His formula, originally
tested at impact velocities of the order of 1000 ft/sec,

expresses the penetration in a given material as

2
s=5fdn (1+2 %) (6)
where
m = mass of projectile
A = cross-sectional area of the projectile
Vy = initial velocity of the projectile.

9/ H. E. Wessman and W. A. Rose, "Aerial Bombardment Protection",
John Wiley and Sons, 1942.
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The constants a and b, empirically determined from
penetration studies, can be identified with the target
strength and density terms appearing in Eq. (5). To
date, this formula has been applied with some success to

9/

the case of armor penetration .

Section B

While the foregoing model does indicate the roles of target
strength and density in controlling the depth of penetration in a
given impact situtation it does not show the interplay of these
variables in fixing the diameters of perforations resulting from
high speed impacts. This parameter has appeared as a prime variable
in recent theoretical studies and since accurate measurements of the
perforation diameters were recorded for the majority of the impact
tests described in this report, they are presented in this section

10,11/
for further consideration .

10 Pei Chi Chou, "Visco-plastic Flow Theory in Hypervelocity
b
Perforation of Plates"™, Fifth Symposium on Hypervelocity Impact,
November 1961.

11/ G. M. Bryan, "Cratering of Lead by Oblique Impacts of Hyper-
velocity Steel Pellets", Fundamentals of Shaped Charges, Twenty-
second Quarterly Progress Report, Contract No. DA-36-061-ORD-513,
April 30, 1961.
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The tests were carried out at 60° obliquity.
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The perforation diameters (crater diameters in the case of
semi-infinite targets) were determined by means of a traveling micro-
scope to an accuracy of 0,01 em. In order to eliminate the ambiquity
associated with the crater lip the microscope was first fine~focused
on the plane surface of the target immediately outside the deformed
area. The focus mechanism was then locked and the traverse
mechanism adjusted to bring into focus the two points on the interior
crater wall corresponding to the internal diameter. Measurements
were made for various thicknesses of three aluminum alloys and one
magnesium alloy for perforations resulting from both normal and
oblique impact. The diameter measurements are presented in Table III-2
and Table IIT-3 and plotted as a function of target thickness in
Figs. III-6 through III-9. The qualitative features of the results

can be summarized as follows:

(i) For targets having a thickness less than P/2, the per-
foration diameter is an increasing function of target
thickness for all materials tested. This increase can
be associated with increased interaction time coupled

with viscous effects in the target.

(ii) For target thicknesses slightly less than P there appears
to be a tendency for the perforation diameter to be some-
what greater than the diameter of the craters in
semi-infinite targets. This may be associated with differ-
ences in the amount of elastic recovery occurring in the

two situations.
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Table III-3. Major and minor entry and exit diameters for various thicknesses of
aluminum targets impacted with 3170 m/sec, 0234 gm steel fragments
at 60° obliquity. The results represent averages of at least five
tests for each set of experimental conditions.

25-0 178-0 2024-T3
(Aluminum) (Aluminum) (Aluminum)

1/32 in. thick targets

Entry Diameter (cm) o718, LT - - - -
o .06, .02 - - - -
Exit Diameter (cm) .78, L8
o .08, .01

1/16 in. thick targets

Entry Diameter (cm) .88, <59 o795, L9 .83, .50
d— 008, 003 005, .01 - -
Exit Diameter (cm) .85, .56 TTs ol9 o79, JL2
G_ 003, .02 006’ 002 - -

3/32 in. thick targets

Entry Diameter (cm) .88, .65 .80, .53 86, U5
a‘ .Oh’ .OLI- 109’ .Ol - -
Exit Diameter (cm) 8L, .60 .75, .51 .71, 3L
d_ .OS, 002 005’ '03 - =

1/8 in, thick targets

Entry Diameter (cm) .92, .68 .80, 5L .78, <52
J .0)4, ‘03 003, 003 - bt
Exit Diameter {cm) oT1, 57 59, Wl L6, W37
a- 008, 007 005, .02 - -

Msemi-infinite" targets (£ 0.25 in.)

Crater Diameter (cm) .93, .68 .80, .57 .80, .52
o .08, .01 .0k, .02 .05, .03
Crater Depth (cm) 140 «33 .22
(o} .0l .03 .03
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There is a strong correlation between crater diameter
and the shear strength of the target material. This
observation is illustrated in Fig. III-10 where crater
diameters for the four materials are plotted against
the handbook value of shear strength for the three

aluminum alloys.
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Chapter IV - Oblique Impact Cratering in Lead at 3.8 km/sec.
- G. M. Bryan

Abstract

The volume and shape of craters produced in lead by the impact
of steel pellets at 3.8 km/sec have been studied as functions of
the angle of incidence for angles up to 70o from the :>5rmal., It is
found that crater volume is linear in the cosine of the angle of
incidence and that it is directly proportional to the kinetic energy
of the pellet for a given angle of incidence. It is also found
that the relation between the depth and the (transverse) diameter is
not entirely consistent with the concept of a spherically symmetrical
afterflow superimposed on a primary penetration which obeys the
density law. The density law itself appears to be satisfied, but the
approximation of spherical symmetry in the afterflow is inadequate

at this velocity.

Introduction

One of the important variables in the phenomenon of hyper-
ballistic impact is the angle of incidence. Historically, this
importance is associated with impact theories of lunar craters, which
are all quite circular in spite of the fact that one would expect
the impacting meteorites to strike the surface at various angles of
incidence. Current interest involves the degree of damage to metal
surfaces caused by hypervelocity projectiles as a function of inci-

dence angle.
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A study of the dependence on incidence angle of the volume
and shape of craters formed on lead surfaces by a 3.2 km/sec steel
pellet has been reported in detaiil{ In that study the effect on
volume was compared with the results of a similar experiment at
5 km/sec by Kineke and it was found that the volume per unit
energy was the same in the two cases for all angles of incidence,
and was a linear function of the cosine of the angle. It was also
shown that the shape of the crater in the 3.2 km/sec case was con-
sistent with the concept of a radial "afterflow" superimposed on a
primary penetration which obeys the density law of penetration by
fluid jets. (The configuration of the impinging fragment in the

5 km/sec case is not sufficiently well known to permit a similar

evaluation to be made.)

The experiment has now been repeated with a velocity in the
vicinity of 4 km/sec . The angle of incidence ranged from 0° to 70°
from the normal., This experiment was much less extensive than the
previous one, its present purpose being mainly a quick comparison

of results at about 4 km/sec with those at 3.2 and 5 km/sec,

1/ Twenty-second Quarterly Progress Report, April 30, 1961, Contract
No. DA-36-061-0ORD-513.

2/ J. H. Kineke, Proc, Fourth Symposium on Hypervelocity Impact (Elgin
AFB, Florida, 1960) Vol. 1.
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Experimental Details

Projector system - The explosive projector system used in this

study is described in Chapter I of this report.

Cratering shots - The method used to align the charge axis with

the target surface at the desired angle was the same as that used
for the previous experiment and has been described in detaill< The
pellet was fired through a 3/4 in. hole in a steel baffle plate
placed about 30 cm from the charge. The target was approximately

50 em from the charge, the actual distance varying a few cm with the
angle setting. The targets were lead plates approximately 6 in.
square and 1 in. thick, with their upper surfaces machined flat.
Sufficient shots were fired to obtain two good targets (i.e. no
obvious breakup) at each of the following angles (measured from the

normal): 09, 35°, 50°, 60°, and 70° . The uncertainty in the

angle is of the order of 1°,

Measurement of the crater characteristics - Both the volume

and the shape of the craters are of interest. For normal incidence
at these velocities the craters are almost perfectly hemispherical
regardless of the shape of the projectile, as long as its aspect
ratio is not too different from unity. This characteristic has been
widely used as the criterion for distinguishing hypervelocity im-
pact and, therefore, depth and diameter as well as the volume are
commonly measured. In the case of oblique impact it is of interest
to examine, in addition, the deviation from the hemispherical shape

as the angle of incidence is increased. Diameters were therefore
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measured in both the transverse and longitudinal directions. These
measurements, as well as the depth, were made with a low power
traveling microscope. Diameters were measured at the level of the
undisturbed surface, and depths were measured down from this surface.
Crater volumes were taken to be the volumes below this surface.

In order to obtain volume measurements the protruding crater rims
were machined off after the diameter and depth measurements had been
made, The craters were then filled with modeling clay of known
density and the excess clay was carefully shaved off. Volumes were

then determined from the weight of the remaining clay.

Results

The results of the crater measurements are summarized in
Table IV~-1 . Crater volume per unit projectile energy is plotted,
together with the earlier results at 3.2 and 5.0 km/sec, in Fig..IV-1,
All three sets of data are in excellent agreement and there now seems
to be little doubt that over this velocity range the volume is
directly proportional to the energy at all angles of incidence and
the proportionality constant is a linear function of the cosine of

the angle of incidence,

In Fig. IV-2 the linear dimensions, in units of the crater
diameter at normal incidence, are shown as functions of the angle of
incidence a . The depth measurements P have been doubled to permit
comparison with the transverse and longitudinal diameters Dy and D&'

For hemispherical craters we have Dy = Dy = 2P . The results show
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that at normal incidence the crater is not quite hemispherical, 2P
being greater than the diameter, This result is similar to that
obtained at 3.2 km/secl< The diameters in Table IV-I exhibit a
rather disturbing feature not found in the previous work; for angles
out to 500 the longitudinel diameter appears to be consistently less
than the transverse diameter by 1-3%. Since this is apparent even
at 0° where the distinction between D¢ and Dﬁ disappears, it would
seem to be a systematic error in the aligning system. There is not
enough data to rule out coincidence entirely, but the consistency

of the effect in the first six individual shots of Table IV-1 cannot
be ignored. In Fig. IV-2 the diameter curves have been normalized
to their respective 0° values to eliminate this discrepancy, and

the 2P curve has been arbitratily normalized to the transverse

diameter at 0°.

A relation between crater depth and transverse crater diameter
was derived in the earlier report, on the assumption that the crater-
ing process consists of a primary penetration which obeys the density
law followed by a radial afterflow of the target material. For a

projectile of length { and diameter d the expression is

1

2
(P - % Dt)/4 = (pp/py) cos a - %

<ol o

In Fig. IV-3 this equation is plotted for a steel projectile of unit
aspect ratio (d = ) on a lead target, together with the experimental
values for both 3.2 and 3.8 km/sec . The higher velocity points

parallel the theoretical line quite well, thus indicating the correct
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density ratio, but fall below it on a line corresponding to a da/1
ratio of about 1.3 . The nominal value of d/f for this case is
1.04., This discrepancy may be an indication that the d/f ratio
actually has changed that much by the time the pellet reaches the
target, or it may be due to a partial failure of the simple model

at this velocity. Specifically, the assumption of spherical
symmetry in the afterflow must be modified in a way which takes into
account the free boundary at the surface., In a qualitative way,

it is apparent that this would have the effect of making the crater

wider and shallower.

In view of this effect an attempt was made to treat Kineke's
5 km/sec datag/ in the same way. Since in this case the dimensions
and orientation of the fragment are not known, the fragment was
taken to be a steel sphere of mass equal to the average projectile
mass quoted for this charge (0.18g). Then { =d = .353 cm. In
Fig. IV-4 all three sets of data are plotted together, Each set
is roughly parallel to the theoretical line but falls below it;
the intercept increasing with increasing velocity. (The straight

lines have been drawn through the data parallel to the density-law

line and do not represent least squares calculations.)
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